
SECURITY REVIEW
REPORT FOR
VICIcoin

1

Aug.23

+44 808 2711555 info@hexens.io

⬢ About Hexens / 3

⬢ Audit led by / 4

⬢ Methodology / 5

⬢ Severity structure / 6

⬢ Scope / 8

⬢ Summary / 9

⬢ Weaknesses / 10

⬡ Centralization risk for the AccessServer contract / 10

⬡ Inconsistent use of whenNotPaused modifier / 12

⬡ Lack of two-step ownership transfer / 15

⬡ Duplicate functionality for checking if address has role / 16

⬡ The getTransactionIds function might return incorrect result / 18

⬡ Add default constructor that calls _disableInitializers() / 21

⬡ Default value initialization / 22

⬡ Constant variable should be marked as private / 23

CONTENTS

2

+44 808 2711555 info@hexens.io

ABOUT HEXENS

Hexens is a cybersecurity company that strives to elevate the
standards of security in Web 3.0, create a safer environment for
users, and ensure mass Web 3.0 adoption.

Hexens has multiple top-notch auditing teams specialized in
different fields of information security, showing extreme
performance in the most challenging and technically complex
tasks, including but not limited to: Infrastructure Audits, Zero
Knowledge Proofs / Novel Cryptography, DeFi and NFTs. Hexens not
only uses widely known methodologies and flows, but focuses on
discovering and introducing new ones on a day-to-day basis.

In 2022, our team announced the closure of a $4.2 million seed
round led by IOSG Ventures, the leading Web 3.0 venture capital.
Other investors include Delta Blockchain Fund, Chapter One, Hash
Capital, ImToken Ventures, Tenzor Capital, and angels from Polygon
and other blockchain projects.

Since Hexens was founded in 2021, it has had an impressive track
record and recognition in the industry: Mudit Gupta - CISO of
Polygon Technology - the biggest EVM Ecosystem, joined the
company advisory board after completing just a single
cooperation iteration. Polygon Technology, 1inch, Lido, Hats
Finance, Quickswap, Layerswap, 4K, RociFi, as well as dozens of
DeFi protocols and bridges, have already become our customers
and taken proactive measures towards protecting their assets.

3

+44 808 2711555 info@hexens.io 44

AUDIT
LED BY

Audit Starting Date
21.08.2023

Audit Completion Date
25.08.2023

VAHE
KARAPETYAN
Co-founder / CTO | Hexens

+44 808 2711555 info@hexens.io

METHODOLOGY

Companies often assign just one engineer to one security assessment
with no specified level. Despite the possible impeccable skills of the
assigned engineer, it carries risks of the human factor that can affect
the product's lifecycle.

COMMON AUDIT PROCESS

Hexens methodology involves 2 teams, including multiple auditors of
different seniority, with at least 5 security engineers. This unique
cross-checking mechanism helps us provide the best quality in the
market.

HEXENS METHODOLOGY

5

+44 808 2711555 info@hexens.io

SEVERITY CHARACTERISTICS

Vulnerabilities can range in severity and impact, and it's important
to understand their level of severity in order to prioritize their
resolution. Here are the different types of severity levels of
vulnerabilities:

CRITICAL
Vulnerabilities with this level of severity can result in significant financial
losses or reputational damage. They often allow an attacker to gain
complete control of a contract, directly steal or freeze funds from the
contract or users, or permanently block the functionality of a protocol.
Examples include infinite mints and governance manipulation.

SEVERITY STRUCTURE
The vulnerability severity is calculated based on two components

● Impact of the vulnerability
● Probability of the vulnerability

6

IMPACT PROBABILITY

Rare Unlikely Likely Very Likely

Low / Info Low / Info Low / Info Medium Medium

Medium Low / Info Medium Medium High

High Medium Medium High Critical

Critical Medium High Critical Critical

+44 808 2711555 info@hexens.io

HIGH
Vulnerabilities with this level of severity can result in some financial losses
or reputational damage. They often allow an attacker to directly steal yield
from the contract or users, or temporarily freeze funds. Examples include
inadequate access control integer overflow/underflow, or logic bugs.

MEDIUM
Vulnerabilities with this level of severity can result in some damage to the
protocol or users, without profit for the attacker. They often allow an attacker
to exploit a contract to cause harm, but the impact may be limited, such as
temporarily blocking the functionality of the protocol. Examples include
uninitialized storage pointers and failure to check external calls.

LOW
Vulnerabilities with this level of severity may not result in financial losses or
significant harm. They may, however, impact the usability or reliability of a
contract. Examples include slippage and front-running, or minor logic bugs.

INFORMATIONAL
Vulnerabilities with this level of severity are regarding gas optimizations and
code style. They often involve issues with documentation, incorrect usage
of EIP standards, best practices for saving gas, or the overall design of a
contract. Examples include not conforming to ERC20, or disagreement
between documentation and code.

It's important to consider all types of vulnerabilities, including
informational ones, when assessing the security of the project. A
comprehensive security audit should consider all types of
vulnerabilities to ensure the highest level of security and
reliability.

7

+44 808 2711555 info@hexens.io

The analyzed resources are located on:
https://github.com/ViciNFT/ViciNFT-Token/commit/488e5981025a31
cc7c787177d9d8440cf4255570

The issues described in this report were fixed in the following
commit:
https://github.com/ViciNFT/ViciNFT-Token/commit/98074ec5649a3
45f1b60b5d21e77209c92336f95

SCOPE

8

https://github.com/ViciNFT/ViciNFT-Token/commit/488e5981025a31cc7c787177d9d8440cf4255570
https://github.com/ViciNFT/ViciNFT-Token/commit/488e5981025a31cc7c787177d9d8440cf4255570
https://github.com/ViciNFT/ViciNFT-Token/commit/98074ec5649a345f1b60b5d21e77209c92336f95
https://github.com/ViciNFT/ViciNFT-Token/commit/98074ec5649a345f1b60b5d21e77209c92336f95

+44 808 2711555 info@hexens.io

TOTAL: 8

SUMMARY

HIGH

CRITICAL

MEDIUM

0

0

2

INFORMATIONAL 2

SEVERITY NUMBER OF FINDINGS

SEVERITY STATUS

9

LOW 4

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-15. CENTRALIZATION RISK FOR
THE ACCESSSERVER CONTRACT

SEVERITY: Medium

PATH: AccessServer.sol

REMEDIATION: we strongly recommend fixing the deployment
scripts to ensure that the deployer renounces ownership of the
AccessServer contract and removes itself from the list of
administrators. This will mitigate the security risk posed to the
ViciCoin token holders in the event of a compromised deployer's
private key

STATUS: fixed

DESCRIPTION:

The AccessServer contract is designed to be ownable, meaning that the

deployer who calls the initialize() function becomes the owner of the

contract. As the owner, they have the ability to call the addAdministrator()

and setSanctionsList() functions with the onlyOwner modifier.

Additionally, after initialization, the owner sets the Chainalysis sanctions

oracle and adds the MultiSigWalletWithSurvivorship contract as an

administrator of the AccessServer contract. It is expected that the owner

will renounce ownership after these steps are completed.

10

WEAKNESSES
This section contains the list of discovered weaknesses.

+44 808 2711555 info@hexens.io

CONFIDENTIAL

However, if the owner fails to renounce ownership, there is a significant

security risk to the ViciCoin token holders in the event that the deployer's

private key is compromised. In such a scenario, a threat actor could

potentially steal all ViciCoin tokens from the holders.

The compromised deployer, being an administrator of the AccessServer

contract, could assign the BANNED global role to the victim. Consequently,

the deployer can seize tokens by calling the recoverSanctionedAssets()

function of the ViciERC20 contract, as the victim's account is now banned.

Currently, the AccessServer contract deployed on the Polygon mainnet at

the address 0x54D6970358A6BD193B7e98a92Ef0A1ecCcfBd704 has not

renounced ownership from the ViciCoin deployer (EOA

0x4c1833Cb42FF2f07Bd332D04A2100ebB570A7112). Furthermore, the

AccessServer contract currently has two administrators: the ViciCoin

deployer and the MultiSigWalletWithSurvivorship smart contract.

11

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-3. INCONSISTENT USE OF
WHENNOTPAUSED MODIFIER

SEVERITY: Medium

PATH: see description

REMEDIATION: remove the whenNotPausedModifier from the
transferFrom in ViciERC20 contract in order to allow users to
perform operations as expected

STATUS: fixed

DESCRIPTION:

The function transferFrom in the ViciERC20 contract (L229) contains the

whenNotPauseModifier, unlike transfer and transferAndCall which have

very similar functionality and purpose. A user or smart contract might

solely rely on transferFrom to perform operations depending on the setup

they use. For example only keeping gas in one approved main address and

using it to control all operations for many different tokens that are owned

by difference address via transferFrom.

Even if we discount such scenario the logic behind using the

whenNotPauseModifier on transferFrom is something that could prevent

many users to transfer their funds when and how they intended to. This is a

centralisation risk that can lead to reputational damage.

12

+44 808 2711555 info@hexens.io

CONFIDENTIAL

13

 function transfer(

 address toAddress,

 uint256 amount

) public virtual override returns (bool) {

 tokenData.transfer(//@audit unsafe transfer?

 this,

 ERC20TransferData(_msgSender(), _msgSender(), toAddress, amount)

);

 _post_transfer_hook(_msgSender(), toAddress, amount);

 return true;

 }

 /**

 * @dev See {IERC20-transferFrom}.

 * @dev See {safeTransferFrom}.

 *

 * Requirements

 *

 * - Contract MUST NOT be paused.

 * - `fromAddress` and `toAddress` MUST NOT be the zero address.

 * - `toAddress`, `fromAddress`, and calling user MUST NOT be banned.

 * - `_tokenId` MUST belong to `fromAddress`.

 * - Calling user must be the `fromAddress` or be approved by the `fromAddress`.

 * - `_tokenId` must exist

 *

 * @inheritdoc IERC20

 */

 function transferFrom(

 address fromAddress,

 address toAddress,

 uint256 amount

) public virtual override whenNotPaused returns (bool) {

 tokenData.transfer(

 this,

 ERC20TransferData(_msgSender(), fromAddress, toAddress, amount)

);

 _post_transfer_hook(fromAddress, toAddress, amount);

 return true;

 }

+44 808 2711555 info@hexens.io

CONFIDENTIAL

14

 /**

 * @inheritdoc IERC677

 */

 function transferAndCall(

 address to,

 uint256 value,

 bytes calldata data

) public virtual override returns (bool success) {

 transfer(to, value);

 ERC677ReceiverInterface receiver = ERC677ReceiverInterface(to);

 receiver.onTokenTransfer(_msgSender(), value, data); //@audit-issue reentrancy?

 return true;

 }

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-2. LACK OF TWO-STEP
OWNERSHIP TRANSFER

SEVERITY: Low

PATH: Ownable.sol

REMEDIATION: implement a two-step transfer of ownership where
newOwner has to claim the role after it is set by the current owner
in order to finalise the transfer

STATUS: acknowledged

DESCRIPTION:

Despite checking against a zero address, the transferOwnership()

function does not prevent the transfer of ownership to an inaccessible

address.

If a typo is made or newOwner keys are lost during the transfer period, all

owner functionality will be lost.

15

 function transferOwnership(address newOwner) public virtual onlyOwner {

 require(newOwner != address(0), "Ownable: new owner is the zero address");

 _transferOwnership(newOwner);

 }

 /**

 * @dev Transfers ownership of the contract to a new account (`newOwner`).

 * Internal function without access restriction.

 */

 function _transferOwnership(address newOwner) internal virtual {

 address oldOwner = _owner;

 _owner = newOwner;

 emit OwnershipTransferred(oldOwner, newOwner);

 }

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-5. DUPLICATE FUNCTIONALITY
FOR CHECKING IF ADDRESS HAS
ROLE

SEVERITY: Low

PATH: see description

REMEDIATION: eliminate the function _hasRole and using
hasLocalRole instead when calling hasGlobalRole. This will
decrease total bytecode size and gas cost on deployment, as well
as making the contract more streamlined and easy to understand.

STATUS: fixed

DESCRIPTION:

The functions hasLocalRole (L548) and _hasRole (L631) in the

AccessServer contract are identical. With the only difference of one being

public and the other being internal. Having more than one function with

the exact same functionality is gas inefficient and hurts readability from a

developing, auditing and user perspective.

16

+44 808 2711555 info@hexens.io

CONFIDENTIAL

17

 function hasLocalRole(

 address resource,

 bytes32 role,

 address account

) public view virtual override returns (bool) {

 return managedResources[resource].roles[role].members[account];

 }

 function _hasRole(

 address resource,

 bytes32 role,

 address account

) internal view virtual returns (bool) {

 return managedResources[resource].roles[role].members[account];

 }

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-13. THE GETTRANSACTIONIDS
FUNCTION MIGHT RETURN
INCORRECT RESULT

SEVERITY: Low

PATH: MultiSigWalletWithSurvivorship.sol

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

The getTransactionIds() function calculates incorrectly an array of

transaction IDs with a status when the from parameter is non-zero.

More precisely, when from=0 and to=getTransactionCount(all) the result

is correctly returned and includes all transaction IDs.

However, for other cases, an incorrect array of transaction IDs is returned,

more precisely:

● when from=1 and to=getTransactionCount(all), transaction IDs

aren't missing in the result array, but the last element is 0.

● when from=1 and to=getTransactionCount(all), the last transaction

ID is missing and the result contains two 0 elements at the end of the

array.

This happens because:

● The first loop contains incorrect condition i <= transactionCount &&

count <= maxResults.

18

+44 808 2711555 info@hexens.io

CONFIDENTIAL

● An incorrect array length is used for _transactionIds array

_transactionIds = new uint256[](count).

19

 function getTransactionIds(

 uint256 from,

 uint256 to,

 TransactionStatus status

) public view virtual returns (uint256[] memory _transactionIds) {

 uint256[] memory transactionIdsTemp = new uint256[](transactionCount);

 uint256 count = 0;

 uint256 i;

 uint256 maxResults = to - from;

 for (i = 1; i <= transactionCount && count <= maxResults; i++)

 if (

 status == TransactionStatus.EVERY_STATUS ||

 transactions[i].status == status

) {

 transactionIdsTemp[count] = i;

 count += 1;

 }

 _transactionIds = new uint256[](count);

 for (i = from; i < count; i++)

 _transactionIds[i - from] = transactionIdsTemp[i];

 }

+44 808 2711555 info@hexens.io

CONFIDENTIAL

The getTransactionIds() should return correct result when the from

parameter is not 0.

The following code returns the correct array of transaction IDs:

20

 function getTransactionIds(

 uint256 from,

 uint256 to,

 TransactionStatus status

) public view virtual returns (uint256[] memory _transactionIds) {

 uint256[] memory transactionIdsTemp = new uint256[](transactionCount);

 uint256 count = 0;

 uint256 i;

 uint256 maxResults = to - from;

 for (i = 1; i <= transactionCount && count <= to; i++)

 if (

 status == TransactionStatus.EVERY_STATUS ||

 transactions[i].status == status

) {

 transactionIdsTemp[count] = i;

 count += 1;

 }

 _transactionIds = new uint256[](maxResults);

 for (i = from; i < count; i++)

 _transactionIds[i - from] = transactionIdsTemp[i];

 }

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-14. ADD DEFAULT
CONSTRUCTOR THAT CALLS
_DISABLEINITIALIZERS()

SEVERITY: Low

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

The protocol uses upgradable contracts. There is a danger of calling the

initialize() function directly on the implementation contract behind proxy.

In such case if the implementation calls self-destruct or performs delegate

calls it’s possible to delete the implementation leaving contract bricked.

Contracts should include a default constructor

calling_disableInitializers() function of Initializable.sol.

21

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/proxy/utils/Initializable.sol#L181

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-9. DEFAULT VALUE
INITIALIZATION

SEVERITY: Informational

PATH: MultiSigWalletWithSurvivorship.sol

REMEDIATION: see description

STATUS: acknowledged

DESCRIPTION:

We found that at the following locations in the code, there are variables

initialized to their default value. This is already the default behavior of

Solidity and it becomes therefore redundant and a waste of gas.

1. count L728, L806, 857;

2. inactiveCutoff L729, L753.

Remove the initialization to a default value in favor of saving gas.

For example:

22

 uint256 count = 0;

 uint256 inactiveCutoff = 0;

 uint256 count;

 uint256 inactiveCutoff;

+44 808 2711555 info@hexens.io

CONFIDENTIAL

VCNFT-7. CONSTANT VARIABLE
SHOULD BE MARKED AS PRIVATE

SEVERITY: Informational

PATH: MultiSigWalletWithSurvivorship.sol

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

The MAX_OWNER_COUNT parameter on line 175 should also be private.

Setting constant to private will save deployment gas. This is because the

compiler won't have to create non-payable getter functions for deployment

calldata, won't need to store the bytes of the value outside of where it's

used, and won't add another entry to the method ID table. If necessary, the

value can still be read from the verified contract source code.

23

 uint256 public constant MAX_OWNER_COUNT = 50;

24

